The thermal properties of the diamond, BC8 and ST12 structures are extracted from phonon calculations. In this section the method of calculating phonon dispersion relations from an empirical potential will be presented. It is, in general, very complicated to include anharmonic terms in such calculations. All phonon calculations presented in this chapter will be found using the harmonic approximation. The validity of this approximation is examined more fully in Chapter 6 when self-interstitial configurations in the diamond structure are examined. In that case it is found that anharmonic effects are negligible and therefore it is assumed here that they can also be neglected.
Phonon dispersion relations are calculated by looking for wavelike solutions to the classical equations of motion of atoms under a small displacement from their equilibrium sites. Firstly, a crystal is composed of an infinite number of primitive unit cells in three dimensions labelled





relative to the origin l=(0,0,0) This unit cell defines the periodic structure of the crystal by repeating its primitive unit cell throughout space.
Each unit cell contains n atoms which are labelled by k=1,...,n each of which are at positions



Vibrations occur when the atoms are displaced from their equilibrium positions. If the atoms are allowed to move from their equilibrium positions by an amount


The potential energy,


If the displacements are assumed to be small compared to interatomic distances (which is generally true for stable crystals at a temperature well below its melting point), then the potential function can be expanded about the equilibrium positions:

where





and

The subscript 0 means that the coefficients are evaluated at the equilibrium positions,

The first term in the series is constant, that is, it is independent of the displacements of the atoms from their equilibrium sites and so can be taken as the zero of the potential energy. The force on the atom is given by

which is the coefficient of the second term in the series. Provided the derivative is evaluated at the equilibrium position, this term will be zero since at equilibrium the total force on any atom is zero. In the harmonic approximation all terms in cubic or higher order are assumed negligible, therefore the potential can be expressed simply as the third term in the expansion.
That term is not defined for self interactions, that is, it allows only the




which must be equal to zero because such a translation clearly cause the forces,





Now that all the elastic constants


by looking for the wavelike solutions

where c.c. stands for the complex conjugate of the first term and



On this substitution into the equations of motion the following dispersion relation is found:

where D is known as the dynamical matrix. The elements of D are given by

The dimension of the dynamical matrix in 3n. Therefore using the symmetry of the crystal by expressing it in terms of repeating primitive unit cells replaced an infinite set of equations of motion of an infinite number of atoms by a set of 3n linear homogeneous equations. The condition that the homogeneous system of equations have a non-trivial solution is that the determinant of the coefficients in Equation (5.10) vanish, that is to say

therefore the eigenvalues of the dynamical matrix give the allowed (squares of) phonon frequencies for a given


This lattice dynamics method has been coded for the massively parallel CM200 Connection Machine and is described elsewhere[76]. Although, in the present case, using such a large computer is unnecessary, it becomes so when very large dynamical matrices are required as in Chapter 6 where eigenvectors of matrices up to dimension


Source: http://cmt.dur.ac.uk/sjc/thesis/thesis/node52.html